1 Introduction

BLACK, FUSCIA = PGV

TURQOISE=JMK

This paper covers ideas for an improved architecture for the next generation of EMC.

The original architecture was done at a time when CPUs were slow, had limited RAM, etc.. The need for a distributed system was much greater then. Now there is only a need for distributed control. A single PC is strong enough to run the machine itself. In addition, the HAL provides many RT threads for execution. This reduces the number of user space processes required. I don’t see the connection here. RT is RT, and non-RT is non-RT. EMC1 had three user processes (GUI, task, and IO), and three RT threads (trajectory (10mS), servo (1mS), and step generation (as fast as possible). I’m open to eliminating the IO process, but that has nothing to do with RT threads. EMC2 has the same three RT threads, we’ve just chosen to add the RT ladder logic to one of them. You are viewing the HAL as only having the same threads as EMC1. I'm viewing it as much more flexible and allowing us to create as many threads as required in a particular machine. Hence my comment about not needing a dedicated IO process. I can have as many IO threads as I want in HAL. In addition the process model is inefficient when the processes are run on the same machine. It’s better to have one process with multiple threads. Processes are actually very efficient under Linux. Single threaded processes with various forms of IPC are more familiar to programmers, and are more likely to be testable in isolation. I don't see how inter-process communication can be as efficient as threads in that are in the same address space unless you resort to shared memory. Even then, the amount of time taken for a process switch should be much higher that for a thread switch. For a process switch, you have to load all the page table info for the associated process. This may even involve disk IO (I don't know enough about the kernel to be sure about this).

2 External Libraries

Whenever possible, well-documented, well known, and debugged libraries should be used. This reduces the maintained code base and allows the developers to concentrate of machine control.

2.1 Data Structures

Use standard library of data structures like Standard Template Library (STL), etc. should be used when possible. I’m probably not competent to comment on this. STL sounds like OO, C++ stuff that I’m unfamiliar (and thus uncomfortable) with.
2.2 Config Files

Use XML for all config files. Use xml library from gnome, xmlsoft, or apache. IMO XML was designed to be written and read primarily by machines, with reading and editing by humans as a low priority. I haven’t looked at a lot of XML files, but the ones I have looked at were hard to read. The tags tend to obscure the content, and also mean a lot more typing. I prefer to use formats that are more human friendly. I don't see XML as being too bad. It really depends on the file and I like the hierarchical nature of it. That being said, with the XML libraries available, I expect we will build a GUI configuration tool that will make it really easy for the integrator. During early development, we can write the XLM by hand.

2.3 Threads

Use a standard thread API like that of POSIX or something similar with wide spread adoption. There seem to be several implementations of POSIX threads for linux. NPTL is a newer implementation from what I can tell. NPTL seems to be optimized for applications that need to spawn lots of threads, sometimes at runtime in response to requests. It seems to me that EMC needs a small number (single digit) of threads (or processes) and they can be spawned at program startup. I’d rather avoid another dependency. Either use “vanilla” posix threads or processes. My understanding is that NPTL is the latest implementation of "vanilla" POSIX on linux. I wasn't suggesting we use anything more.

2.4 Inter-process Communication

2.4.1 Remote Procedure Call (RPC)

A standard remote communication mechanism that supports the object/method methodology should be used. Something simple like RPC with good tools should be selected. Ditto.
2.4.2 NML

Remove all traces of NML. The only thing we need from libnml is pose math. This alone will cut the code base in half. Agreed.
3 EMC

3.1 User Space Processes

3.1.1 IO Control

Remove iocontrol task. HAL and CL handle IO. Agreed, tentatively. We need to prove to ourselves that all I/O functions can be mapped to pins and signals without doing strange and confusing things. For example, a lot of IO functions are of the form “do foo, report back when done”. If “foo” is something that naturally has on and off states, like LUBE_ON and LUBE_OFF, that maps well to HAL pins. One pin has the desired state, the other is feedback, and the code waits until they match. (But even that needs to be able to handle timeouts or other failures, what if they never match?) But what about toolchange? We can set a request pin true when the command is received, and wait for the response pin to go true before continuing, but then what? There needs to be a mechanism to reset both the request and response pins to prepare for the next time. That isn’t difficult, but there might be even more complex situations that simply don’t work well with HAL, and must invoke more complex code using a method that can pass more data than HAL pins. Agreed, we need to study the canonical commands better and determine more details on their implementation (I'm working on this now).

3.1.2 EMC Task

3.1.2.1 UI API

Use RPC interface to UI.

3.1.2.2 IO

Export HAL pins directly.

3.1.2.3 Composition

Right now the EMC task is composed of one thread that runs the planner and the executer and an NML queue. Change the EMC task to be composed of two threads (planner and executer) and a canonical queue. Your terminology is a little confusing. Traditionally the only “planner” in EMC is the trajectory planner, deep down in the RT motion controller. The source refers to them as TaskPlan and TaskExecute, why don’t we use those terms.
3.1.2.3.1 TaskPlan

The planner thread runs the RPC server and calls the interpreter, which executes some commands directly, and queues others. From the source: “emcTaskPlan() reads the new command, and decides what to do with it based on the mode (manual, auto, mdi) or state (estop, on) of the machine. Many of the commands just go out immediately to the subsystems (motion and IO). In auto mode, the interpreter is called and as a result the interp_list is appended with NML commands” I like this model, but I’d like to see planning and execution decoupled more. TaskPlan shouldn’t execute anything itself. Regardless of the operating mode, TaskPlan should only issue commands on a queue, and leave the execution up to TaskExecute. The same queue would be used for commands straight from the GUI, like “jog”, and for commands from the interpreter. There would have to be a path around the queue (or better, a way to send a command to the head of the queue) for things that need immediate response, like ABORT. I totally agree with your comments about planning and execution. IMO, the only things directly executed by the plan stage is error recovery type stuff like flushing the execution queue, aborting commands, etc.. I think the execution thread should execute all other commands.

3.1.2.3.2 TaskExecute

The executer thread executes queued canonical commands. Having a separate thread for this removes the state machine structure and makes the code straightforward and more readable. After all, there really are things happening in two different time frames here, so there should be two threads. Or two processes. I like the idea of being able to run only one of them at a time for testing, with the output of TaskPlan being logged for inspection, or even for later use as input to TaskExecute. This can be built into the objects, we don’t need separate process spaces for this.

3.1.2.3.3 Canonical Command Queue

Holds a list of canonical commands pending execution.

One thing that was proposed at the Fest and agreed on at least in principle (Fred in particular thought it would be a big improvement): today, commands in the queue can have preconditions or postconditions attached to them. We proposed dispensing with conditions as attachments to commands, and simply add the conditions as queue entries of their own. Today, the queue might have entries like: “do foo”; “do bar (precond=baz)”; etc. With the new approach, the queue would contain “do foo”; “condition baz”; “do bar”; etc. That simplifies the code that handles each individual command (removes conditions stuff) and places all the condition stuff under a command of its own, in one place. When the executor encounters a condition command in the queue, it would simply wait until the condition is true, then continue.

I’d like to present a radical idea that just occurred to me. Today, there is a queue in user space that holds canonicals from the interp (or elsewhere) until they are dispatched by TaskExecute. Once dispatched, they either go to iocontrol which sets HAL pins, most likely leading into realtime space, or they go to usrmotintf, which puts them in a SHMEM buffer going to realtime space. Why don’t we just let the Canonical Command Queue be the boundary between user and realtime space? Simply merge TaskExecute with motion and IO into one module that accepts cannonical commands and drives both motion and I/O HAL pins. That module sits in realtime space, and the Command Queue straddles the boundary. That would solve the inter -> trajplanner bottleneck and consolidate a two layer queue/buffer system into one layer. I like your ideas about the queue. You're getting more radical than me ;-)

3.1.2.4 Interpreter

3.1.2.4.1 Micro-code

Build the interpreter with a micro-code approach. The micro-code would be similar to canonical commands, but have a larger vocabulary.

I like the micro code approach. One important thing to keep in mind is that the interpreter is almost always well ahead of the machine itself, to allow for buffering of motion commands so the RT motion control code never starves. That is historically a major source of bugs. The interp is on line 500 of a g-code file, while the machine is cutting on line 30. Things like the “current line” display in the GUI need to deal with this, resuming after a stop needs to deal with it, etc, etc. The interpreter keeps a lot of state info that is relevant to the line it is interpreting, but doesn’t yet apply to the machine because the machine hasn’t gotten there yet. I don’t know the best way to deal with it… EMC’s current method of dealing with it is best described as “not very well”. I agree it is an issue today. I think we can solve it by having interpreter status and executer status. The executer status tells us where the machine is. We can tag each canonical command with the line number of the original g-code (or whatever code) that produced it.

3.1.2.4.1.1 Config File

Read g-code to interpreter micro-code mapping from an XML config file. This will allow macro creation for things like automatic tool change.

3.1.2.4.1.2 Canonical Commands

Have micro words for all canonical commands.

3.1.2.4.1.3 IO

Have micro words for reading/writing HAL IO. Note that these should NOT modify the HAL I/O directly, because of the readahead I mentioned earlier. They should be queued with the rest of the canonical commands. (In fact, the canonical command list should be reviewed. Should we have canonical commands for machine specific stuff like “mist on”, or generic ones that let you set a HAL pin of your choice, or both?) Agreed. The microcode may not even be needed the more I look at it. If the canonical commands are correct, that's all we should need. What we need to allow is the g-code (or whatever) to canonical mapping to be loaded from config files. This way we can customize things for tool change, etc. We may need to add a few more canonical commands and modify some existing ones.

3.1.2.4.1.4 Conditionals

Have micro words for conditional execution of the following micro word.

3.1.2.4.1.5 Branching

Have a micro word for jumping

3.1.2.4.1.6 Subroutines

Have micro words for subroutines.

3.1.2.4.1.7 External Calls

Have a micro code word for calling an external program or subroutine. This will allow complex functions to be coded externally.

3.1.3 GUI

3.1.3.1 Widgets

3.1.3.1.1 Mode

3.1.3.1.1.1 Manual

3.1.3.1.1.1.1 Jog

3.1.3.1.1.1.2 Home

3.1.3.1.1.1.3 Limit Override

3.1.3.1.1.2 MDI

3.1.3.1.1.2.1 G-code editor

3.1.3.1.1.2.2 Conversational Programming (from CP1)

3.1.3.1.1.3 Auto

3.1.3.1.1.3.1 Start

3.1.3.1.1.3.2 Cycle Hold/Continue

3.1.3.1.1.3.3 Step

3.1.3.1.1.3.4 Reset

3.1.3.1.2 Buttons

3.1.3.1.3 DRO

3.1.3.1.4 Tool Editor

3.1.3.1.5 Plot (like axis)

This works (I think) by feeding the file thru the interpreter and plotting the resulting canonical commands. Ideally it should use exactly the same interpreter code as the actual run, just redirect the output so that instead of being queued and sent to the machine, it is plotted. Agreed.

3.1.3.1.6 Back Plot (like tkemc)

This works by sampling the actual machine position, as the machine runs. It should continue to work that way, it serves as a realworld view of what is happening. Agreed.

3.1.3.2 RPC

Use RPC to interface to EMC Task

3.1.3.3 HALUI

Make a HALUI module that exports HAL pins and makes calls to EMC task. This belongs under EMC proper, it’s not a generic part of HAL, it is an EMC specific HAL module, just like motmod and iocontrol are today. Agreed, but it is already under the EMC GUI section. Maybe GUI should be UI.

3.2 Real Time Threads

3.2.1 Motion

3.2.1.1 SHMEM

Rework SHMEM queue to motion to remove bottleneck. Moving the canonical queue to the user/RT boundary would eliminate this issue. Agreed and a great idea.

3.2.1.2 Interpolation

Add circular interpolation to limit jerk (maybe something has already been done here?).

3.2.1.3 Unused Code

Remove unused logging and PID code.

4 HAL BLOCS
4.1 Architectural changes

4.1.1 Realtime in user space

Realtime code in user space, instead of (or possibly in addition to) kernel space. (Kernel space would give absolute best latency, user is easier to code and more portable.)

4.1.2 Multiple operating modes

Allow HAL to operate on stock linux, using pthreads in user space instead of realtime tasks in kernel space. Keep the user interface the same for both, only difference is the maximum thread rate, and amount of latency. Be prepared for kernel improvements that may allow “vanilla” kernels to deliver hard realtime performance.

4.1.3 Metadata Storage

Remove all of the meta-data from SHMEM. Only the pin, param, and signal vars should be in SHMEM.

4.2 Configuration

4.2.1 Config Files

Use XML. Don’t use XML ;-)
4.2.2 Config Tools

Make a schematic based GUI configuration generator tool. Maybe use an open source schematic capture and write a net list to config file translator. The ideal tool would be written specifically for this task. I’d like to be able to use it “live”, click on a “wire” and you can read the value of that signal, for instance, or place a halscope probe on the signal. Also would like to have dialogs or windows that can do the equivalent of a “show pins” command, and update it several times a second. The schematic editor can’t do any of these things (but would probably be easier to implement). That would be nice, but I wasn't thinking EMC3 ;-)

4.3 Virtual Control Panel (VCP)

4.3.1 HAL Capable Widgets

Make widgets that export HAL pins. Implement them in library that lets ordinary GUI apps add HAL capable widgets to their windows, and can also be used by PanelBuilder to make custom layouts without coding. If we pick something like QT, we can make the widgets “Designer” capable. I’m pretty sure designer ca write out a file that can be used by the Panelbuilder engine.

4.3.2 Panelbuilder

Panelbuilder program runs as a separate process, builds a window containing widgets as described by a config file. Click events on widgets would manipulate HAL output pins, and a background loop would read HAL input pins and modify widget appearance accordingly. I think this is traditionally done by one thread in most GUIs.

4.4 Classic Ladder

4.4.1 GUI

Clean this mess up. Single window version, I hate the GIMP model of a bunch of little windows and toolbars scattered all over the screen. Also use normal File/Edit/etc menu bar type menus. Redo the file format, eliminate the “save a bunch of files to a temp dir, then concatenate them” approach, and if possible make the format more human readable. Agreed.

4.4.2 Logic Engine

Restructure to support multiple ladders, running in different threads. Should also be able to run the engine in user space, as a standalone process. Every ladder, user or RT, has a SHMEM block, and the GUI can connect to any one to view or edit it. This shouldn’t be that hard. I already have the code structured pretty much like this, it’s just a matter of how to specify the number of ladders, their parameters, and SHEMEM keys to the RT module when it loads.

Improve memory management – fixed limits on things like coils and contacts are too restrictive, setting them at insmod time is just ugly. Ideally the SHMEM size could be changed to fit the ladder, rather then preallocating it. Hmm, I’m not sure I like this. Dynamically managing kernel memory size may not be the best thing. If you think of a real HW PLC, you get one big enough to handle the task. The same applies here, and it’s not that hard to bump some params. There is a status dialog that shows you how much is used by the current ladder logic.

4.4.3 Libcl

Put all of the SHMEM access routines in a library and add synchronization. This will allow for other interfaces than the GUI.

4.4.4 Modbus Server

Break this out of the GUI and make it standalone. Link it with the libcl. I have to do my homework on modbus. If it is basically a way to access remote I/O devices, I’d prefer to break it completely out of CL and make a HAL driver for it. That way any HAL based system can use modbus I/O, regardless of whether it uses CL or not. Modbus is a field bus that can run be run over various networks, including ethernet. The modbus server in CL opens a socket and listens for connections from other modbus devices. We could probably make this a HAL modbus server, but we will need a way to map the modbus structure to HAL pins.

4.4.5 Words

Think about exporting word IO to HAL.

4.4.6 Var and IO Names

Think about how to support text-based names. I’m not sure how these would be displayed on the GUI. Keep the existing Q0, I0, etc names, but have an internal symbol table that maps them to their HAL names. On-screen, the short names are visible for each contact or coil. Right click on the item and you see the long name.

Think about renaming the HAL pins from “classicladder.foo” to “plc.foo”. (I’d like to do this right away if possible.). The rename is trivial if that’s what we really want.

